Hematocrit and blood osmolality in developing chicken embryos (Gallus gallus): in vivo and in vitro regulation.
نویسندگان
چکیده
Hematocrit (Hct) regulation is a complex process involving potentially many factors. How such regulation develops in vertebrate embryos is still poorly understood. Thus, we investigated the role of blood pH in the regulation of Hct across developmental time in chicken embryos. We hypothesized that blood pH alterations in vitro (i.e., in a test tube) would affect Hct far more than in vivo because of in vivo compensatory regulatory processes for Hct. Large changes in Hct (through mean corpuscular volume (MCV)) and blood osmolality (Osm) occur when the blood was exposed to varying ambient temperatures (T(a)'s) and P(CO2) in vitro alongside an experimentally induced blood pH change from ~7.3 to 8.2. However, homeostatic regulatory mechanisms apparently limited these alterations in vivo. Changes in blood pH in vitro were accompanied by hydration or dehydration of red blood cells depending on embryonic age, resulting in changes in Hct that also were specific to developmental stage, due likely to initial blood gas and [HCO(3)(-)](v) values. Significant linear relationships between Hct and pH (Hct/ΔpH=-21.4%/(pH unit)), Hct and [HCO(3)(-)] (ΔHct/Δ[HCO(3)(-)]=1.6%/(mEq L(-1))) and the mean buffer value (Δ[HCO(3)(-)]/ΔpH=-13.4 (mEq L(-1))/(pH unit)) demonstrate that both pH and [HCO(3)(-)] likely play a role in the regulation of Hct through MCV at least in vitro. Low T(a) (24°C) resulted in relatively large changes in pH with small changes in Hct and Osm in vitro with increased T(a) (42°C) conversely resulting in larger changes in both Hct and Osm. In vivo exposure to altered T(a) caused age-dependent changes in Hct, demonstrating a trend towards increased Hct at higher T(a). Further, exposing embryos to a gas mixture where P(CO2) = 5.1 kPa for >4 h period at T(a) of 37 or 42°C also did not elicit a change in Hct or Osm. Presumably, homeostatic mechanisms ensured that in vivo Hct was stable during a 4-6 h temperature and/or hypercapnic stress. Thus, although blood pH decreases (induced by acute T(a) increase and exposure to CO(2)) increase MCV and, consequently, Hct in vitro, homeostatic mechanisms operating in vivo are adequate to ensure that such environmental perturbations have little effect in vivo.
منابع مشابه
chHDAC11 mRNA Expression During Prenatal and Postnatal Chicken (Gallus gallus) Brain Development
Background: Histone deacetylation plays an essential role in transcriptional regulation of cell cycle progression and other evolutionary processes. Several results confirm the importance of the latest found HDAC11 gene to deacetylate histone core in neurons and their supportive cells in developing the vertebrate Central Nervous System (CNS). Objectives: This study investigates the HDAC11 pote...
متن کاملDynamics of metabolic compensation and hematological changes in chicken (Gallus gallus) embryos exposed to hypercapnia with varying oxygen.
In day 15 chicken embryos, we determined the time course responses of acid-base balance and hematological respiratory variables during 24h exposure to 15, 20, 40 or 90% O(2), in the presence of 5% CO(2). Hypercapnic respiratory acidosis was initially (2h) only slightly (∼20%) compensated by metabolic alkalosis in normoxic/hyperoxic embryos. After 6h, respiratory acidosis was partially (∼40-50%)...
متن کاملUltrasonographic Imaging of Reproductive Organ in Indonesian Native Chicken Hen (Gallus Domesticus)
Hen’s native chicken reproductive organ health status evaluation is important for raising Indonesian native chicken in order to support protein supply for people demand. This study aimed to discover the images of Indonesian hen’s native chicken reproductive organ using ultrasonography. There were 18 hens that used in this study and divided into two groups, 15 hens for brightnessmode ultrasonogr...
متن کامل'Blood-doping' effects on hematocrit regulation and oxygen consumption in late-stage chicken embryos (Gallus gallus).
The extent to which hematocrit (Hct) is regulated and the impact of altered Hct on blood oxygen transport in avian embryos are largely unknown. Consequently, we investigated how acute blood removal or Ringer solution injection modified Hct in day 15 embryos, and how ;blood doping' with erythrocyte-enriched whole blood influenced O(2) consumption in day 15-17 chicken embryos. Mean Hct (+/-s.e.m....
متن کاملPhenotypic developmental plasticity induced by preincubation egg storage in chicken embryos (Gallus gallus domesticus)
The developing chicken blastoderm can be temporarily maintained in dormancy below physiological zero temperature. However, prolonged preincubation egg storage impairs normal morphological and physiological development of embryos in a potential example of fetal programming (in this case, "embryonic programming"). We investigated how preincubation egg storage conditions (temperature, duration, hy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Respiratory physiology & neurobiology
دوره 179 2-3 شماره
صفحات -
تاریخ انتشار 2011